The 0–1 Knapsack Problem: A Continuous Generalized Convex Multiplicative Programming Approach

نویسندگان

  • Alireza Mohebi Ashtiani
  • Paulo Augusto Valente Ferreira
  • Felipe Ferreira Lopes
چکیده

In this work we propose a continuous approach for solving one of the most studied problems in combinatorial optimization, known as the 0–1 knapsack problem. In the continuous space, the problem is reformulated as a convex generalized multiplicative problem, a special class of nonconvex problems which involves the minimization of a finite sum of products of convex functions over a nonempty convex set. The product of any two convex positive functions is not necessarily convex or quasiconvex, and, therefore, the continuous problem may have local optimal solutions that are not global optimal solutions. In the outcome space, this problem can be solved efficiently by an algorithm which combines a relaxation technique with the procedure branch–and– bound. Some computational experiences are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Polyhedral Study of the Cardinality Constrained Knapsack Problem

A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous ...

متن کامل

A novel approach to Bilevel nonlinear programming

Recently developed methods of monotonic optimization have been applied successfully for studying a wide class of nonconvex optimization problems, that includes, among others, generalized polynomial programming, generalized multiplicative and fractional programming, discrete programming, optimization over the efficient set, complementarity problems, etc. In the present paper the monotonic approa...

متن کامل

Facets of the Complementarity Knapsack Polytope

We present a polyhedral study of the complementarity knapsack problem. Traditionally, complementarity constraints are modeled by introducing auxiliary binary variables and additional constraints, and the model is tightened by introducing strong inequalities valid for the resulting MIP. We use an alternative approach, in which we keep in the model only the continuous variables, and we tighten th...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

The KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings

The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015